
CO-OCCURRENCE 

COMMUNITY ASSEMBLY 

A pervasive theme in community ecology is that the species composition of a 
community is governed by deterministic "assembly rules" (Cody and Diamond 
1975; Case and Diamond 1986). These rules emphasize the importance of 
interspecific interactions in determining which species are found in a particular 
assemblage (Drake 1990). We have already examined two such "rules" in this 
book: (I) species that overlap "too much" in phenology, resource use, or other 
niche dimensions cannot coexist (Chapters 4 and 5 ) ;  (2) species that do coexist 
must differ in body size or trophic morphology by a critical minimum that 
allows them to exploit different resources (Chapter 6). 

In this chapter, we consider related assembly rules that predict the presence 
and absence of particular species rather than their sizes or patterns of resource 
utilization. The significance and even the reality of such assembly rules have 

been widely debated in community ecology. Proponents have argued for the 
importance of resource exploitation (Diamond 1975), competitive hierarchies 
(Gilpin et al. 1986), and priority effects (Drake 1991) in producing assembly 
rules. Critics have complained that many of the rules are trivial tautologies that 
lack predictive power (Connor and Simberloff 1979) and that the evidence for 
consistent patterns of community structure, much less for assembly rules, is 
hardly compelling (Wiens 1980; Wilson 1991a). 

Laboratory studies have provided the strongest evidence for assembly rules. 
For example, Gilpin et al. (1 986) thoroughly explored competitive interactions 
among 28 species of Drosophila. They varied the level of food resources, the 
length of the experiments, and, most importantly, the initial combinations and 
densities of species. Competitive interactions were strong and predictable, and 
few species persisted until the end of the experiments. For example, experi- 
ments that started with 10 species always ended with fewer than four. With 10 
initial species, there were 2" = 1,024 different possible species combinations, 
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but fewer than a dozen of these persisted. These results contrast with nature, 
where dozens of Dro-osophila species may co-occur sympatrically. 

Field experiments also provide some evidence for assembly rules. Abele 
(1984) experimentally "supersaturated" Pocillopora coral heads with com- 
ponent species of decapod crustaceans. Agonistic interactions and predation 
by voracious wrasses caused the fauna to "relax" to a predictable species 
number and composition for coral heads of a given size. Cole (1983) 
described assembly rules for five ant species on small mangrove islets in the 
Florida Keys. Two "primary species" (Crematogaster ashmeidi and Xeno- 
myrmex floridanus) could never be introduced successfully on very small 
islands, perhaps because of frequent flooding. In contrast, the minimum 
island size occupied by two "secondary species" (Pseudomyrmex elongatus 
and Zacryptocercus varians) was set by the presence of primary species, 
which were superior competitors. The two primary species also did not 
coexist and formed a classic "checkerboard" pattern (Diamond 1975), in 
which only one of the two species, but not both, occurred on an island. 
Experimental transplants and behavioral arena experiments confirmed that 
aggressive interactions between workers prevented coexistence and that 
either primary species as an island resident could repulse an invader. Thus, 
observed species combinations could be predicted on the basis of island size 
and competitive relationships among colonizers. 

However, the debate over assembly rules has not been concerned with such 
detailed experimental studies. Rather, the controversy has been over whether 
assembly rules can be inferred from nonexperimental data, specifically from 
combinations of coexisting species, usually on islands. Such data are conve- 
niently summarized in a presence-absence matrix, which forms the fundamen- 
tal unit of study in many analyses of community ecology and biogeography 
(McCoy and Heck 1987). Null models have been a useful tool for evaluating 
pattern in such matrices and for revealing the extent to which species combina- 
tions can be predicted on the basis of simple models of island colonization 
(Simberloff 197th). 

PRESENCE-ABSENCE MATRICES 

Presence-absence matrices summarize data on the occurrence of a group of 
species at a set of sites (Table 7.1). The "sites" may range in size from 160-mm2 
vegetation quadrats (Watkins and Wilson 1992) to large oceanic islands (Dia- 
mond 1975) or entire continents (Smith 1983). Similarly, the set of "species" 
analyzed may be restricted to ecologically similar congeners (Graves and 



Table 7.1 
Presence-absence matrix for five fish taxa in 2 8  Australian springs 

- 

Number of 

springs 

Goby x x x x x x x x x x x x x x x x x x x x x x x x x x x x  28  
Gudgeon x x x x x x x x x x x x x x x x x x x  1 9  
Catfish x x x x x x x x x x x x x x  1 4  

Hardyhead x x x x x x  x x x  9 
Perch x x x x x x x  7 

Number of species 5 5 5 5 5 5 4 4 4 4 3 3 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1  

Each row is a different taxon and each column is a different site (= spring). Each x represents the occurrence of 
a taxon in a particular spring. Springs are ordered by species richness. Goby = Chlamydo~obius sp.; Gudgeon = 
Mogurnda mo~urnda; Catfish = Neosilurus sp.; Hardyhead = Craterocephalus sp.; Perch = Leiopotherapon 
unicolor. Note the nearly perfect pattern of nestedness. From Kodric-Brown and Brown (1993). 



Gotelli 1993) or to ecological or trophic guilds (Heatwole and Levins 1972), or 
it may encompass entire avifaunas (Connor and Simberloff 1979). 

In an r x c matrix, each row of the matrix represents a different species and 
each column represents a different site (Simberloff and Connor 1979). Each 
cell in the matrix (a,) contains a 0 or a 1, denoting, respectively, the absence or 
presence of species i on site j. The row sum R, represents the total number of 
occurrences of each species; it ranges from a minimum of I to a maximum of 
c, the number of sites censused. Similarly, the column sum C, gives the number 
of species censused on site j and ranges from a minimum of 1 to a maximum of 
r, the number of species recorded. The grand matrix sum N represents the total 
number of site occurrences. 

ASSUMPTIONS UNDERLYING THE ANALYSIS 
OF PRESENCE-ABSENCE MATRICES 

Before discussing the analysis of such matrices, it is important to consider the 
assumptions implicit in the choice of the sampling universe and hence in the 
dimensions of the matrix. The decision of which species to analyze is critical. 
If ecologically diverse assemblages are analyzed together, species interactions 
may not be apparent because of the "dilution effect" (Diamond and Gilpin 
1982), in which many species will be compared that are not interacting with 
one another. Or, as Grant and Abbott (1980) have more colorfully expressed it, 
the analysis is "in danger of throwing the baby out with the bathwater, or, more 
specifically, drowning the baby in a tub that is too deep." On the other hand, if 
the analysis is restricted to very few species, the sample sizes.may simply be 
too small to reveal any significant patterns, no matter what test is used (Biehl 
and Matthews 1984). 

Equally important is the choice of which sites to include and which to 
exclude from the analysis. An implicit assumption in the analysis of presence- 
absence matrices is that individual islands serve as replicates to reveal repeated 
patterns of species co-occurrence. But if the islands differ in size or suitability 
for colonization, important adjustments to the null model are necessary. Indeed, 
if the islands vary too much in area, habitat, and isolation, it may be invalid to 
assume they share a common colonization history. Instead, it may be necessary 
to tailor source pools for each individual island (Graves and Gotelli 1983) or to 
control for island differences statistically (Schoener and Adler 1991). We 
suspect that many of the island archipelagoes that have been used for matrix 
analysis, such as the West Indies, probably should be analyzed on an island-by- 
island basis, rather than as "replicates" within an archipelago. 



Published presence-absence matrices almost never include empty rows or 
columns, that is, sites with no species or species that occur on no sites. 
However, these "degenerate" arrangements may be very important in assessing 
nonrandomness of species on the sites they do occur on (Reddingius 1983). For 
example, suppose the source pool for a pair of islands contains many species 
that never occur on either island. In this case, null models that use the presence- 
absence matrix to construct the sampling universe will overestimate the ex- 
pected number of shared species (Wright and Biehl 1982). We believe that the 
initial decisions about the dimensionality of the matrix may be more important 
in determining the results than the mechanics of the null model used. 

There are other limitations of presence-absence matrices. By their very 
nature, these matrices do not include any information on absolute or relative 
abundances of species (Haila and JLvinen 1981). If abundances are known, 
more powerful null models of community assembly can be built (Gotelli et al. 
1987; Graves and Gotelln 1993). The analysis of presence-absence matrices 
assumes that mechanisms controlling co-occurrence are reflected in the domi- 
nant or easily censused life-history stage (Pearson 1986). But in many assem- 
blages, larval dispersal (Roughgarden et al. 1988) and interactions among early 
life-history stages (Wilbur 1988) are responsible for community patterns in the 
adult stage. Presence-absence matrices also require that residency criteria be 
unambiguous (Connor and Simberloff 1978). But it is sometimes unclear 
whether a species is "present" on an island. Breeding status may be difficult to 
establish, and nonbreeding species may have significant ecological effects on 
residents (Lynch and Johnson 1974; Simberloff 1976a). Finally, presence- 
absence matrices assume that all sites have received equal sampling effort, 
which may not be true even for well-studied archipelagoes (Connor and Sim- 
berloff 1978). 

In spite of these limitations, the analysis of presence-absence matrices holds 
the promise of revealing general patterns of con~munity structure (Pearson 
1986). In some cases, prescriptions for conservation biology have been made 
on the basis of presence-absence matrices (Patterson 1987), so it is especially 
important that their analysis be on solid ground. 

TWO MODES OF ANALYSIS 

Using the terminology of numerical taxonomy (Sneath and Sokal 1973), there 
are two modes of analysis for a presence-absence matrix (Simberloff and 
Connor 1979). The Q-mode analysis assesses the similarity of different col- 
umns, revealing how similar sites are in the species they contain. In R-mode 
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analysis, we compare the rows of the matrix and ask how similar species are in 
the set of islands they occupy. Both modes of analysis are relevant to the issue 
of assembly rules, although the Q-mode analysis has its roots in biogeographic 
studies of faunal similarity (McCoy and Heck 1987). 

Q-MODE ANALYSES IN BIOGEOGRAPHY 

Given a list of species for two sites, how can we quantify the degree of similarity 
between the sites? The sites will obviously be most similar if they share identical 
species lists and most dissimilar if they share no species. In analyses of biogeogra- 
phy, a plethora of correlated indices has been used to quantify site similarity 
(Simpson 1960; Cheetharn and Hazel 1969; Jackson et al. 1989). For example, 
Jaccard's (1 908) index scales similarity to range from 0 to I : 

N ,  and N2 are the number of species present on each site, and Nc is the number 
of species common to both sites. As with measures of species diversity (Chapter 2) 
and niche overlap (Chapter 4), these indices are sensitive to sample size-the 
value of the index depends as much on the total species richness as it does on the 
number of shared species. Although some indices have been derived from proba- 
bility theory (Goodall 1966, 1974; Baroni-Urbani and Buser 1976), most lack 
an underlying statistical distribution. Consequently, it is difficult to say whether 
a particular value of an index is statistically significant. 

If such indices are to be used at all, they must be combined with simulations 
to assess the degree to which the index is unusually large or small (Wolda 
1981). Rice and Belland (1982) used this approach to examine the similarity of 
moss floras in five lithophysiographic regions of Borne Bay, Newfoundland. 
They combined the species lists from all five regions to generate an aggregate 
species pool, and weighted each species by its number of occurrences (one to 
five). Without such weighting, the analysis would have assumed that all species 
have equivalent probabilities of dispersal and persistence. From the weighted 
species pool, they drew randomly the observed number of species found in 
each region, and then calculated Jaccard's index between all possible pairs of 
sites. The simulations were repeated 20 times to generate 95% confidence 
intervals for Jaccard's index. The result was that all the observed pairwise 
similarities were less than expected, and half of the combinations were signifi- 
cantly less than expected (Figure 7.1). This suggests that the floral regions are 
indeed distinct, although if the regions were originally delineated solely on the 
basis of these species lists, the test would be circular. 



Figure 7.1. Mean and 95% confidence intervals for randomized values of Jaccard's co- 
efficient of similarity between all possible pairs of five floristic provinces. The triad ol' 
vertical lines represents different source pool designations for mosses of Newfound- 
land. The dashed line is the observed similarity between pairs of provinces. From Rice 
and Belland (1982), with permission. 

In a biogeographic context, faunal provinces are delineated by grouping many 
sites together on the basis of painvise similarities (Pielou 1979a). A variety of 
cluster analyses are available for this purpose, which hierarchically group sites on 
the basis of similarity (Jackson et al. 1989). However, all of these methods assume 
that the resulting "groups" are biologically meaningful. Because groupings can be 
made for sets of random numbers, some method is needed for distinguishing 
groups that are more similar than expected by chance. Strauss (1982) described 
randomization techniques to ensure that, whatever the clustering algorithm, the 
clusters are actually more similar than expected by chance. In an evolutionary 
context, similar bootstrapping methods have been used to assess the significance of 
phylogenetic reconstructions (Felsenstein 1985). 

Q-MODE ANALYSES IN ECOLOGY 

In ecological studies, pairwise similarities have also been used to relate faunal 
similarities to other site characteristics. For example, Terborgh (1973a) re- 
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gressed pairwise similarities for West Indian avifaunas against interisland 
distances. He concluded that island size and position explained between 80 and 
93% of the variation in avifaunal composition, and attributed the remainder to 
habitat differences and species interactions. Power (1975) regressed interisland 
similarities of Galapagos bird and plant species against physical characteristics 
of the islands. He concluded that bird similarity among islands was explained 
by plant similarity, but that plant similarity was explained by interisland dis- 
tance, along with island area and elevation. For Galapagos finches, Abbott et al. 
(1977) also used similarity indices to evaluate the effects of floral composition 
on avifaunal composition. All of these analyses are problematic because the 
similarity indices are ad hoc and because the painvise points in the regression 
analysis are not independent of one another. 

A Simple Colonization Model (Null Hypothesis 0) 

In an unpublished presentation, Johnson (1974; cited in Simberloff 1978a) 
pioneered a different approach. He used the number of shared species as a 
simple index of similarity between sites and then asked what the expected 
number of shared species is under the simplest colonization model (Null 
Hypothesis 0). If two islands with m and n species, respectively, are colonized 
randomly by a pool of P equiprobable species, the expected number of shared 
species (E, , )  is 

E,, = mn 1 P (7.2) 

with a variance (from Connor and Simberloff 1978) of 

As a standardized index of site similarity, Connor and Simberloff (1978) 
recommended 

(Observed,, - E , , . , ) / E  (7.4) 

For the 29 Galapagos Islands, there are = 406 island pairs. Of these, the r291 
observed number of shared species exceed'ed [he expected in 369 cases. Connor 
and Simberloff (1978) obtained similar results at the generic level for Galapa- 
gos plants, and Simberloff (1978a) found that all pairs of nine mangrove 



islands in the Florida Keys shared more insect species than expected if species 
had equal colonization probabilities. Note that this hypothesis does not assume 
that all islands are identical, because differences in species richness among 
islands are maintained in this model. 

A Small-Island Limitation Model (Null Hypothesis I) 

Johnson (1974) noted that habitat availability might be responsible for the fact 
that most sites shared more species than expected compared with Null Hypoth- 
esis 0. In particular, species may be missing from small islands if these islands 
lack critical habitat. A modified protocol also placed species randomly and 
equiprobably, but the species pool for each island was composed of only those 
species found on islands of that size or smaller. In this case, the expected 
number of shared species is mn/P,, where P, is the number of species in the pool 
of the larger island (m 5 n). Incorporating this small-island limitation improved 
the fit of the Galapagos plant data to the expected values: 285 of the 406 pairs 
of islands shared more species than expected. If species number (rather than 
island size) characterized the lower minimum, 259 of the 406 pairs of islands 
shared more species than expected. 

Limits at the upper size end are also possible. Diamond (1975) hypothesized 
that certain "supertramp" species were restricted to species-poor communities 
by diffuse competition. 7b incorporate this constraint into the null model, the 
species pool would consist of all species that occurred on islands of a particular 
size or larger. The extent to which the probability of occurrence of a species is 
related to community size, island area, or other site attributes is the "incidence 
function" of the species (Diamond 1975). Incidence functions may serve as 
realistic constraints in null models of species co-occurrence. They may also 
represent a type of "assembly rule" that can be tested against other colonization 
models, as we describe later in this chapter. 

A Nonrandom Dispersal Model (Null Hypothesis 11) 

Null Hypothesis 0 is unrealistic, in part because it assumes species are identi- 
cal. But even if colonization were stochastic, species would be expected to 
occur at different frequencies on islands because they differ in their abilities to 
disperse and persist. Dispersal and persistence abilities are probably a function 
of many species-level attributes, including population size (Terborgh and Win- 
ter 1978) and variability (Karr 1982a), body size (Pimm et al. 1988), and 
geographic range (Graves and Gotelli 1983; Jablonski 1986). When species 
occurrence probabilities can be measured independently, they can be a power- 
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ful tool in null model analyses. But for most archipelagoes, this information is 
lacking. One must either assume (unrealistically) that species occurrence prob- 
abilities are equal or somehow estimate those probabilities from the matrix 
itself. 

The "occurrence distribution" (Connor and Simberloff 1978) has been 
used to weight species, so that the probability of occurrence of a species is 
proportional to its frequency of occurrence (Abele and Patton 1976). Many 
critics have objected that this procedure is circular-the incidence data are 
used to estimate probabilities of occurrence, which are then used to test the 
pattern of co-occurrence (Grant and Abbott 1980; Diamond and Gilpin 
1982; Case and Sidell 1983). However, constraining marginal totals does 
not uniquely determine the pattern of co-occurrence in the data (Manly 
1991). As in contingency table analysis (Fienberg 1980), some arrange- 
ments of the data may be highly improbable given a set of marginal con- 
straints (Connor and Simberloff 1983), and this should be true whether or 
not the marginals themselves are influenced by competition (Simberloff 
1978a). As we shall see, the consequences of marginal constraints on the 
resolution of co-occurrence patterns depend greatly on whether the con- 
straints are absolute or probabilistic. 

Analytic expressions for Null Hypothesis I1 are not known, so the ex- 
pected number of shared species must be determined with a simulation. In 
such a simulation, species are drawn from an aggregate source pool for the 
archipelago, with probabilities weighted by species occurrences. As in Null 
Hypotheses 0 and 1, the observed number of species on each island is 
maintained as an absolute constraint. For the Galapagos plants, 338 of the 
406 island pairs had more shared species than expected under Null Hypoth- 
esis I1 (Connor and Simberloff 1978). Johnson (1974) performed a mixed- 
model simulation that simultaneously incorporated both the small-island 
limitation (Null Hypothesis I) and the weighted species pool (Null Hypoth- 
esis 11). For the Galapagos plant data, this was the only analysis in which 
there were too many island pairs with fewer shared species than expected. 
However, only about 5% of the pairwise comparisons were statistically 
significant (Figure 7.2). 

From this result, Simberloff (1978a) concluded that the mixed model "might 
not be far from an accurate description of colonization in this archipelago." He 
also reasoned that an archipelago structured by competition should show a 
predominance of island pairs with fewer shared species than expected. How- 
ever, he warned that shared species number is a weak statistic for detecting 
diffuse competition, because it says nothing about taxonomic or ecological 
relationships of the species that do co-occur. 



Equiprobable Small-island Weighted Mixed 

limitation 

Null model 

Figure 7.2. Four null models of shared plant species between pairs of Galapagos Is- 
lands. For each model, the left-hand bar represents the number of island pairs that 
shared more species than expected and the right-hand bar represents the number of is- 
land pairs that shared fewer species than expected. The hatched region represents the 
number of pairs that deviated at the 5% level of significance. "Equiprobable" is the 
model in which all species had equal colonization probabilities. "Small-island limita- 
tion" allowed for equiprobable colonization but restricted species occurrences to the 
minimum island size observed. "Weighted" assigned colonization probabilities for 
each species proportional to the number of island occurrences. "Mixed" model in- 
cluded both the small-island limitation and weighted colonization probabilities. If spe- 
cies occurrences were independent of one another, the height of the two bars would be 
approximately equal, and roughly 2.5% of each bar would be shaded. Note the pre- 
dominance of island pairs that shared more species than expected for the first three 
null models. Data from Simberloff (l978a). 

Criticisms of Ecological Q-Mode Analysis 

Wright and Biehl (1982) argued that shared-island analyses may not reveal 

competitive effects, because many of the painvise island comparisons are 

between islands that have the same species sets. Consequently, the shared- 

species analysis would fail to detect a highly significant "checkerboard distri- 
bution" in which a pair of species never occur together on  the same island 

(Diamond 1975). The problem is not as  severe if more than a single pair of  

species occurs in a checkerboard. With a n  assemblage composed of several 

competitive guilds, some shared species patterns may be improbable, although 
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it will still be difficult to detect competition from these sorts of data (Connor 
and Simberloff 1984). 

Hamill and Wright (1988) pointed out two other complications with Q-mode 
analysis. First, the number of species pairs should be tallied above and below 
the simulated median, not the simulated mean (see also Hendrickson 1981). 
Second, because the pairs of islands are not independent, it is not appropriate to 
ask whether more than 5% of the pairs are significantly different from the 
expectation. They recommended examining shared species among randomly 
selected, independent pairs of islands, rather than among all possible pairs. 
These island pairs could be compared to randomizations for each, rather than to 
a single randomization of the entire presence-absence matrix. With these re- 
finements, Hamill and Wright (1988) found a good agreement between ob- 
served and expected number of shared species for the Galapagos avifauna. In 
contrast, Connor and Simberloff's (1978) analyses suggested a significant 
excess of shared species among islands. Neither analysis implicated a role for 
interspecific competition in the distribution of the Galapagos avifauna, al- 
though these studies did not consider body size differences among coexisting 
species (see Chapter 6). 

We think that using Q-mode analysis to detect competition is a case of the 
right answer to the wrong question. Q-mode analysis should be used as a 
biogeographic tool to group sites on the basis of similarity in species composi- 
tion, rather than to infer species interactions on the basis of dissimilarity. The 
analysis is trivial for a single pair of species, but for larger assemblages, 
Equation 7.4 is a natural index for classifying pairs of sites on the basis of 
species similarity. Of course, such an analysis depends on the assumption of a 
common species pool and on whether small island constraints and species 
weighting are retained, but these assumptions are implicit in any similarity 
analysis. By generating an explicit null expectation and allowing for increas- 
ingly complex colonization models, Q-mode analysis provides a reliable frame- 
work for comparing species composition of sites (McCoy and Heck 1987). If 
the question is one of species interactions, then an R-mode analysis, which 
compares species in the sites they share, is more appropriate. 

ASSEMBLY RULES 

Missing Species Combinations 

Most analyses of presence-absence matrices have examined the number of 
shared sites for a set of species. These R-mode analyses have emphasized the 



detection of nonrandom patterns of species association. Two broad classes of 
interactions can lead to distinctive species combinations. (1) Interaac.tions of 
species and sites. These include site characteristics, such as island area, isola- 
tion, and habitat availability, and species characteristics, such as dispersal, 
persistence, and habitat affinities. Even if species colonize sites independently 
of one another, interactions between species and sites may lead to characteristic 
species combinations. (2) Interactions between species. Competition, preda- 
tion, and mutualism between particular species pairs and among larger 
groups of species will also lead to nonrandomness. Biotic interactions may 
lead to "forbidden combinations" of species (Diamond 1975) and also to 
combinations of species that are unusually stable and occur more frequently 
than expected. 

The search for assembly rules of community organization is predicated on 
the assumption that biotic interactions are strong enough to produce discernible 
patterns. The null model approach has been to build colonization models that 
incorporate only species-site interactions (autecological factors) and to com- 
pare their predictions to the empirical data. The goal is to provide a baseline for- 
recognizing nonrandom patterns caused by species interactions. Because a 
variety of forces can lead to either positive or negative species associations 
(Schluter 1984), it is a challenge to properly frame and interpret null models for 
assessing species interactions. Even if a pattern can be shown by a null model 
analysis to be nonrandom, it may not be possible to determine the underlying 
cause (Simberloff and Connor 198 1 ). 

Statistical Tests for Missing Species Combinations 

The pioneering work of E. Chris Pielou (Pielou and Pielou 1968; Pielou 1972a) 
on the R-mode analysis of species associations was ignored and uncited for 
over a decade (Simberloff and Connor 198 1). Pielou and Pielou (1968) noted 
that for presence-absence matrices with r species (= rows), there are 2' possible 

species combinations (including the combination of none of the r species being 
present). With enough replicated sites, the observed and expected frequencies 
of these combinations can be compared with a chi-squared test. This compari- 
son holds the row totals of the presence-absence matrix constant. The null 
hypothesis is that the observed frequency of different species combinations is 
no different than expected by chance, given that some species in the collection 
are common and others are rare. 

Unfortunately, this test is rarely practical, because the number of species 
combinations is usually very large compared to the number of sites. Pielou and 
Pielou (1968) instead advocated a simulation procedure in which each species 
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is placed randomly and independently in sites. From these simulations, one can 
obtain the expected number of different species combinations. 

The observed number of combinations may be less than this expectation 
either because (1) some sites are uniformly better than others for all species, or 
because (2) species associate nonrandomly with one another or with different 
sites. In either case, there will be fewer combinations of species than expected 
under the null model. By carefully comparing the number of occupied sites 
with the curve generated by the null model, it may be possible to distinguish 
between segregative and nonsegregative association. Pielou and Pielou (1968) 
did this for 13 collections of insect and spider fauna associated with Polyperus 
fungus brackets. The number of combinations did not differ from the expected 
in five collections. In the remaining eight, there were fewer associations than 
expected, although there was evidence for segregative association in only three 
of the samples. 

Two restrictions are important in Pielou and Pielou's (1968) analysis. First, 
all sites are assumed equiprobable. If this assumption can be relaxed, it may be 
easier to reveal the effects of species interactions. Second, the analysis requires 
an estimate of the frequency of unoccupied sites. Unfortunately, these data are 
not usually collected, and ad hoc procedures for dealing with empty sites (e.g., 
Siegfried 1976) may not be valid (Simberloff and Connor 198 1). 

Whittam and Siegel-Causey (1981a) expanded on Pielou and Pielou's (1968) 
method and used a contingency table analysis to test for species associations in 
Alaskan seabird colonies. Rather than looking just at the number of species 
combinations, Whittam and Siegel-Causey (1981a) used a series of hierarchi- 
cal log linear models to tease apart positive and negative species associations. 
Observed species combinations differed in frequency from those expected 
under a model of independent assortment. Models that best fit the data included 
mostly positive two-way associations between species (Figure 7.3). Higher- 
order interactions were uncommon, and positively associated pairs of species 
tended to overlap in diet. These sophisticated analyses derive their strength 
from very large sample sizes [20 species, 902 colonies (= sites), and 19 diet 
categories] and provide considerable insight into species interactions. 

Pielou (1972a) developed a second type of R-mode analysis. She analyzed 
the variance of the row sums in the presence-absence matrix, that is, the 
variance in the frequency of occurrence of each species. If the species are 
distributed independently of one another, then the row sums will behave as a 
series of random variables, with a covariance of zero. As described in Chap- 
ter 5, the ratio of variance in total species number in sites to the sum of the 
variances of individual species provides a simple test for positive or negative 
covariance in a presence-absence matrix. The variance ratio was derived inde- 
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Figure 7.3. Complex species associations in Alaskan seabird colonies, as detected by 
contingency table analysis. For each of five habitat types, the diagram summarizes sta- 

tistically significant interactions. Solid line = positive painvise interaction; dashed line 
= negative painvise interaction; heavy line = negative three-way interaction. GG = 
Glaucous Gull (Larus hyperhoreus); TP = Tufted Puffin (FI-ater-cula cirrhatu); HP = 

Homed Puffin (Fratercula cornirulata); GwG = Glaucous-winged Gull (Larus 
glaucescens); PG = Pigeon Guillemot (Cepphus columba); CrA = Crested Auklet 

(Aethia cristatellu); PA = Parakeet Auklet (Cyrlorrhynchus psittucula); LA = Least 
Auklet (Aethia ~~usi l la) ;  CA = Cassin's Auklet (Ptychoramphus a1eutic.u.~); WA = 

Whiskered Auklet (Aethia pygmaea); DcC = Double-crested Cormorant (Phalacro- 
corax auritus); RfC = Red-faced Cormorant (Phalacrocorax ur-ile); PC = Pelagic 
Cormorant (Pha1acrocoraxpelagicu.s); RIK = Red-legged Kittiwake (Rissu hrevi- 
rostris); BIK = Black-legged Kittiwake (Rissa tridactyla); CM = Common Murre 
(Uria aalge); TbM = Thick-billed Murre (Uria lomvia); FSP = Fork-tailed Storm 
Petrel (Oceanodroma furcata); LSP = Leach's Stonn Petrel (Oceanodroma 

leucorhoa); AM = Ancient Murrelet (Synthilihot-amphus antiquus). From Whittam 
and Siegel-Causey (1 98 1 a), with permission. 
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pendently by Jarvinen (1979) in the analysis of temporal fluctuations and by 
Schluter (1982) in the analysis of spatial distributions. 

The variance ratio and related tests do not focus on assembly rules per se or 
missing species combinations, but on the average amount of association be- 
tween each species and all others in the matrix. Schluter (1984) analyzed 
several published presence-absence matrices with the ratio test and found that 
positive covariation, rather than neutral or negative co-occurrence, was the 
most common pattern. However, the variance ratio test assumes that species 
number per site can vary freely, which may account for the predominance of 
positive aggregations. 

Simberloff and Connor (1981) thoroughly reviewed the literature on 
missing species combinations. They used Maxwell-Boltzmann statistics to 
calculate the probability of observing a particular number of missing spe- 
cies combinations in an archipelago. The Maxwell-Boltzmann analysis as- 
sumes that each combination of species is an equiprobable group of 
colonists. An alternative analysis assumes that the probability of a particu- 
lar combination is proportional to the product of the colonization probabil- 
ities of the component species. Thus, combinations that include common 
(= widespread) species are more probable than combinations with rare 
species. This proportional weighting always raises the observed tail proba- 
bility. If some combinations are more likely than others, the number of 
combinations expected under the null model decreases. 

Simberloff and Connor (1981) investigated claims that missing species 
combinations were nonrandom for assemblages of plants (Abbott 1977), birds 
(Siegfried 1976; Abbott et al. 1977), and mammals (Grant 1972b; M'Closkey 
1978; King and Moors 1979). Few significant patterns emerged from these 
analyses-in most cases, the observed number of missing species combina- 
tions was about what one would expect, given a random sample of all species 
in the archipelago. 

One notable exception was the Gal5pagos finches, which had fewer multi- 
species combinations than expected. With six species of Geospiza, there are 

(9 = 20 possible three-species combinations. But only two of the 20 possible 

combinations were found on the islands 0, = 0.000002; weighted p = 0.001). 
On the other hand, the observed number of one- and two-species combinations 
did not differ from the null model, and the significance of the multispecies 
patterns hinged upon which species and islands were included in the source 
pool. Nevertheless, the presence of very few species combinations of Galapa- 
gos finches is consistent with the evidence of nonrandom body size patterns in 
this assemblage (see Chapter 6). 



Diamond's Assembly Rules 

Diamond (1975) popularized the study of community assembly rules in a 
detailed treatise on the distribution of 141 land-bird species on New Guinea 
and its satellite islands in the Bismarck Archipelago. Diamond (1975) summa- 
rized many years of his own field studies on species-area relationships, in- 
cidence functions, species combinations, and resource use patterns in this 
archipelago. Although Diamond (1975) discussed the importance of factors 
such as dispersal, habitat availability, and chance colonization, he emphasized 
that interspecific competition within groups of related species (ecological guilds) 
was the most important determinant of observed species combinations. 

Diamond (1975) codified and generalized his findings in a list of seven 
"rules" of community assembly: 

I .  "If one considers all the comhinations that can be formed @om a group o f  related 
species, only certain ones of these comhinations exist in nature." 

2 .  "These permissible combinations resist invaders that would transform them into a 
forbidden comhination." 

3. " A  c,omhination that is stal>le on a large or species-rich island may he unsrahle on 
a small or species-poor island." 

4. "On a small or species-poor island a comhination may resist invaders that would 
he incorporated on a larger or more species-rich island." 

5. "Some pairs of species never coexist, either by themselves or as part of a larger 
comhination." 

6 .  "Some pairs of species that form an unstable combination by themselves may form 
part of a stable larger comhination." 

7 .  "Corzversely, some comhinations that are composed entirely ofstuhle sub- 

combinations are themselves unstable." 

The publication of Diamond's (1975) rules touched off an acrimonious debate 
over null models that has spanned more than 20 years in the ecological litera- 
ture [see Wiens (1989) for an even-handed review of the controversy]. In this 
section, we review the null models that have been used to test Diamond's 
(1975) rules. and the various claims and counterclaims that have followed. We 
think that all of the null models proposed to date contain one or more serious 
flaws. Later in this chapter. we propose a hybrid model that combines the best 
features of each and seems to overcome the most serious deficiencies. 
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First, we need to consider the nature of the assembly rules. Wiens (1989) 
noted that Diamond's (1 975) rules are statements of pattern and do not explic- 
itly describe mechanisms, although they do require that communities be in an 
equilibrium state. Nevertheless, the use of terms such as "forbidden combina- 
tions" clearly implicates the role of competitive interactions and implies that 
the patterns are nonrandom and would not be expected in the absence of 
species interactions. 

It has been very difficult to make these rules operational. On the one hand, 
the rules as stated are so broad that they would be difficult to apply to real data, 
much less test them (Haefner 1988b). Null model analyses have contributed 
considerably to the study of assembly rules by forcing the issue of precisely 
what patterns must be established in order to document a competitively struc- 
tured community. On the other hand, Diamond's (1975) own interpretation of 
these rules for the Bismarck Archipelago seems so detailed, anecdotal, and 
nonstatistical that it resembles more an historical narrative than a test of 
community assembly. We agree with Simberloff (1978a) that "one is left with 
the uneasy feeling that the rules lack predictive power, in that all the data are 
required before any prediction can be made." 

The Connor and Simberloff Procedure 

Connor and Simberloff (1979) launched an aggressive attack on Diamond's 
(1975) assembly rules. They argued that Rules 2, 3, 4, 6, and 7 were either 
tautologies or restatements of other rules. Connor and Simberloff (1979) did 
test Rules 1 and 5 with a null model analysis. Rules 1 and 5 are identical, except 
that Rule 1 mentioned "related species" and Rule 5 was restricted to species 
pairs. Rule 5 described a checkerboard pattern of species occurrences, which is 
perhaps the simplest and most clear-cut of Diamond's (1975) assembly rules 
(Graves and Gotelli 1993). The requirement of a complete distributional check- 
erboard is especially stringent: two species might have exclusive distributions 
on 99 islands, but if they occurred together on a single island, the pair would 
not be scored as a true checkerboard. Diamond (1975) presented seven exam- 
ples of pairs of closely related, ecologically similar species that were distrib- 
uted as checkerboards in the Bismarck Archipelago. 

The checkerboard patterns (Figure 7.4) were striking and provided the 
strongest evidence for Diamond's (1975) hypothesis. For two of the examples 
(Macropygia cuckoo-doves and Pachycephala flycatchers), the probability that 
the species within each genus formed a distributional checkerboard [the 
"shared islands" analysis of Wright and Biehl (1982)J was unusually small 
(Connor and Simberloff 1979). 
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Figure 7.4. Checkerboard distnbution of two Macropygia cuckoo-dove species in the Bis- 
marck Archipelago. Each island supports only one of the two species. M = Macropygia 
mackinlayi; N = Mucropygiu nigrir-ostris; 0 = neither species present. From Diamond 
(1 975). Reprinted by permission of the publisher from Ecology and Evolution of 
Convnunities. M .  L. Cody and J. M. Diamond (eds). Cambridge, Mass.: The Belknap 
Press of Harvard University Press. Copyright O 1975 by the President and Fellows of Har- 
vard College. 

But even these examples may not be so clear-cut. Macr-opygia nigt-imstt-is 
occurred mostly on large, species-rich islands, whereas its putative competitor 
(M. mackinlayi) occurred mostly on small and medium-sized islands with few 
species. If these incidence constraints were not a direct result of competitive 
interactions, then the resulting checkerboard may be due to independent colo- 
nization by each species of different-sized islands (Wiens 1989). Moreover, 
Diamond's (1975) Figure 20 of this example (and also Diamond's (1975) 
Figure 22 for the genus Ptilinopus) did not show all of the "empty islands" that 
supported neither species. When these were incorporated into the calculation, 
the p value was marginally nonsignificant (Connor and Simberloff 1983). 

However, Connor and Simberloff (1979) were not satisfied with the demon- 
stration that some pairs of species showed unusually exclusive distributions. 

They argued that, with (I:') = 9,870 possible species pairs, it was not surpris- 
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ing that seven pairs showed exclusive distributions. Malanson (1982) made a 
similar point about checkerboard distributions of plant species in the hanging 
gardens of Zion National Park. 

Because Diamond (1975) did not provide data on all guild designations for 
this assemblage, we cannot say how improbable it is that all five pairs would be 
ecologically similar congeners. In order to assert that species checkerboards 
are a manifestation of community assembly rules, Connor and Simberloff 
(1979) required that the observed number of pairs, trios, etc. of species that 
exhibit checkerboards be significantly greater than the expected number gener- 
ated by an appropriate null model. 

Diamond's (1975) Bismarck data were never published, so Connor and 
Simberloff (1979) instead used presence-absence data for West Indian birds 
and bats, and New Hebridean birds. Connor and Simberloff (1979) used a null 
model that randomized an observed presence-absence matrix subject to the 
following three constraints: 

1. The row totals of the randomized matrix were maintained. 
2. The column totals of the randomized matrix were maintained. 
3. For each row, species occurrences were restricted to those islands 

for which total species richness fell within the range occupied by 
the species. 

Constraint (1) maintained differences between species in their frequency of 
occurrence. Constraint (2) maintained differences among islands in the number 
of species they contained. Constraint (3) maintained the observed incidence 
function for each species (it could not occur in assemblages larger or smaller 
than those observed). The simulation first ordered the rows of the matrix from 
most common to least common species, and then randomly placed species on 
islands until all three constraints were satisfied. 

When the matrix was sparsely filled, this algorithm was satisfactory. But if 
many of the species were widespread (= large row totals), it was sometimes 
impossible to place species late in the simulation and still maintain the con- 
straints. In these cases, Connor and Simberloff (1979) repeatedly interchanged 
submatrices in the matrix so that row and column sums were not altered. After 
the interchanges, new matrices that were nonequivalent to the observed matrix 
were retained to estimate the null distribution. More recent advances in ran- 
domization algorithms (Stone and Roberts 1990; Daniel Simberloff, personal 
communication) have overcome this problem. 

Connor and Simberloff (1979) used 10 such randomizations to construct a 
histogram of the mean and standard deviation of the number of pairs (or 



Table 7.2 
Null model analyses of co-occurrence in island faunas 

-~ 

Observed Expected 
Number of number of number of 

possible checkerboard checkerboard 
Taxon species pairs species pairs species pairs p 

New Hebrides birds 99 1 0.90 >0.99 
West Indies birds 1,029 62 1 437.0 < 1 
West Indies bats 499 325 208.6 < 1 O-X 

-- 

For each fauna, the table lists the total number of confamilial pairs, the expected number of 

checkerboard pairs, and the observed number of checkerboards. The chi-squared significance test 
is for the overall fit of the distribution. Note the excess of checkerboard pairs for the West Indian 

faunas. From Connor and Simberloff (1979) and Diamond and Gilpin (1982). 

triplets) of species that shared 0, 1, 2 . . . n islands. The first bar of this 

histogram is the zero class and represents the expected number of species pairs 
that share no islands, i.e., have a checkerboard distribution. Connor and Sim- 

berloff (1979) lumped adjacent size classes that had small expected values and 
then compared the entire distribution of observed and expected frequencies 

with a chi-squared test, using 11-1 degrees of freedom for an archipelago with n 
islands. They tested the fit of the observed and expected number of shared 
islands for pairs and trios of species at the level of the entire assemblage and 
within taxonomic families. 

What was the outcome of these tests? For the New Hebrides bird data, the fit 

between observed and expected was suspiciously good 0) > 0.99). This matrix 
had to be randomized by the interchange of submatrices, and Connor and 
Simberloff (1979) noted that the matrices randomized in this way were very 
similar to the observed matrix. They pointed out that there were very few 
arrangements of this matrix that maintained row, column, and incidence con- 
straints. As a consequence, the evidence for competition was weak, unless one 
were to argue that competition was responsible for the marginal totals. 

Patterns for West Indian birds and bats were quite different. In all cases, the 
null hypothesis was strongly rejected, and in all analyses, there were more 
exclusively distributed species pairs (checkerboards) than expected by chance 
(Alatalo 1982). Connor and Simberloff (1979) did not emphasize these highly 
nonrandom results (Table 7.2). Instead, they presented graphical comparisons 
of observed and expected species combinations in each frequency class (Fig- 
ure 7.5). From these, they argued that the overall fit of the observed and 
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N U M B E R  OF I S L A N D S  S H A R E D  

Figure 7.5. Observed and expected numbers of species pairs versus number of islands 
shared for West Indies birds. The solid line is the expected value generated by a null 
model that held row and column totals constant and maintained species area restric- 
tions. Dots are the observed values. Although the logarithmic scale suggests a good fit 
between the observed and expected values, the difference is highly significant < 
0.01) and in the direction predicted by the competition hypothesis (more species pairs 
that share zero islands than expected by chance). See also Table 7.2. From Connor and 
Simberloff (l979), with permission. 

expected data was good, and that therefore Diamond's (1975) seven examples 
of checkerboards were not a compelling demonstration of Assembly Rules I 
and 5. For birds of  the Bismarck Archipelago, and for the West Indian bird and 
bat faunas, Connor and Simberloff (1979) suggested that allopatric speciation 
and limited dispersal of single-island endemics were alternative hypotheses 



that did not invoke interspecific competition but might account for checker- 
board distributions. 

The Connor and Simberloff (1979) model has been used in two additional 
tests. Matthews (1982) analyzed the occurrence of 13 minnow species distrib- 
uted in six streams of the Ozark watershed. Although some species pairs that 
never co-occurred in watersheds were morphologically and ecologically sim- 
ilar, the observed number of checkerboard pairs matched the predictions of the 
null model. However, Matthews's (1982) analysis was based on a binomial 
distribution, sampling with replacement, whereas a more appropriate analysis 
uses the hypergeometric dxstribution, sampling without replacement (Biehl and 
Matthews 1984). Jackson et al. (1992) used the Connor and Simberloff (1979) 
model to analyze five presence-absence matrices for Ontario lake fish and also 
found no evidence of nonrandomness. 

Criticisms of the Connor and Simberloff Procedure 

Connor and Simberloff's (1979) analysis provoked several critiques (Alatalo 
1982; Diamond and Gilpin 1982; Gilpin and Diamond 1982, 1984; Gilpin et al. 
1984) and subsequent rebuttals (Connor and Simberloff 1983, 1984; Gilpin et 
al. 1984; Simberloff and CJonnor 1984). Here, we summarize the most import- 
ant of the criticisms: 

I .  The dilution effect. Because Connor and Simberloff (1979) analyzed 
confamilial groups or entire avifaunas, competitive effects were not apparent. 
Diamond's (1975) choice of examples suggested that the ecological guild was 
the correct unit of analysis for revealing competitive effects. However, guilds 
must be established a priori by criteria that are independent of the co-occur- 
rence data being tested (Connor and Simberloff 1983). Delineating guilds is not 
an easy task (JaksiC and Medel 1990; Simberloff and Dayan 1991), and guild 
designations clearly affect the outcome of null model tests. 

For example, Graves and Gotelli (1993) tested the significance of checker- 
board distributions in mixed-species flocks of Amazonian forest birds. There 
was no evidence of unusual patterns for the entire assemblage of flocking 
species, or for species grouped into ecological foraging guilds. Only when the 
analysis was restricted to congeneric species within feeding guilds was there 
evidence of unusual checkerboard distributions. Even at this level, the patterns 
were statistically significant only for null models based on abundance and 
population structure, rather than presence-absence data (Table 7.3). Vuilleu- 
mier and Simberloff (1980) also found that co-occurrence patterns of Andean 
birds were affected by the designation of ecological and taxonomic guilds in 



Table 7.3 
Observed and expected numbers of perfect checkerboard distributions among pairs of Amazonian bird species in mixed species flocks 

Null model 

Flock 
Guild 

1 
2 
3 
4 
5 
6 
7 

SPEC ABUN DEMO 

Level n Obs. Exp. P Exp. P Exp. P 

Fisher's combined probabilities test 
(df = 14) 



Genera 
Monasa 2 
Xiphorhynchus 4 
Philydor 2 
Automolus 3 
Xenops 2 
Thamnomanes 2 
Myrmotherula 7 
Hylophilus 2 

Fisher's combined probabilities test 

(df = 16) 

Three null models were tested: (1) SPEC (randomization of presence-absence matrices), (2) ABUN (randomization of abundance data), and (3) DEMO 
(randomization of abundance data with intraspecific demographic constraints). These analyses were camed out at three hierarchical levels: (1) entire 

flocks, (2) foraging guilds, and (3) congeneric groups within feeding guilds. Guild designations: 1 = arboreal gleaning insectivores; 2 = arboreal sallying 

insectivores; 3 = arboreal dead-leaf-searching insectivores; 4 = bark interior insectivores; 5 = superficial bark insectivores; 6 = arboreal omnivores; 7 = 

arboreal frugivores. Note that significant checkerboards were consistently revealed only for congeners within the same feeding guild. From Graves and 

Gotelli (1993). 
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the source pool. Although the designation of guilds is a crucial step in the 
analysis of co-occurrence matrices, it is a procedure that is quite distinct from 
the null model randomizations themselves. 

2. Effects of randomization constraints. The three simultaneous constraints 
imposed by Connor and Simberloff (1979) were severe and made it less likely 
that the null hypothesis would be rejected. For example, relaxing the "inci- 
dence constraint" prevented the simulation for the New Hebrides matrix from 
hanging up and revealed significant negative associations between species 
(Wilson 1987). For a similar model with only row and column sum constraints, 
Wilson et al. (1992) detected no evidence of nonrandomness in the distribution 
of rock-pool algae, whereas both positive and negative associations were 
revealed in the flora of islands in Lake Manapouri, New Zealand (Wilson 
1988). 

However, if row and column totals are constrained, some, but not all, 
checkerboard distributions cannot be detected by the null model (Diamond and 
Gilpin 1982; Connor and Simberloff 1984). In an empirical comparison of 
several R-mode analyses, the Connor and Simberloff (1979) procedure was the 
only one that could not detect nonrandomness in presence-absence matrices for 
fish assemblages (Jackson et al. 1992). More formally, Roberts and Stone 
(1990) showed that the average number of shared islands among all species 
pairs cannot change in a simulation if row and column totals are constrained. 
Somewhat paradoxically, matrices with mutually exclusive species pairs will 
always contain some species pairs that co-occur more than expected (Stone and 
Roberts 1992). 

The sample variance of the number of shared islands reflects this pattern. For 
the New Hebrides bird data, this variance was significantly larger than ex- 
pected under the null model that held row and column totals constant, suggest- 
ing that some species pairs shared too many islands and others shared too few 
(Roberts and Stone 1990). Indices of "checkerboardedness" (Stone and Rob- 
erts 1990) and "togetherness" (Stone and Roberts 1992) also confirmed that 
there were too many exclusive and aggregated pairs of species within con- 
familial subsets of the New Hebridean avifauna. 

Some authors (Grant and Abbott 1980; Colwell and Winkler 1984) have 
claimed that it is circular to constrain marginal totals, because the marginals 
also reflect interspecific competition. This claim has never been validated, but 
if it is true, then the Connor and Simberloff (1979) model will reveal only 
competitive effects above and beyond those expressed in the row and column 
sums. The hypothesis that competition sets the total number of island occur- 
rences for a particular species (or the total number of species on a particular 



island) is quite distinct from the hypothesis of forbidden species combinations, 
and deserves to be tested in its own right. There are many reasons besides 
competition that species occur on many or few islands and that species number 
varies among islands. We agree with Connor and Simberloff (1983) that these 
factors need to be incorporated into null models, although imposing absolute 
marginal constraints may be too severe a restriction. 

Finally, the debate over marginal constraints also reflects the way in which 
the null models are interpreted. As we noted in Chapter 1, one interpretation is 
that the null model is simply a statistical randomization. This interpretation is 
consistent with the use of absolute marginal constraints, because the question is 
whether the co-occurrence patterns are nonrandom, given the observed "sam- 
ple" of species and islands. On the other hand, if the randomization is viewed 
as a model of community colonization in the absence of competition, the 
marginal constraints may not be appropriate. In a group of randomly colonized 
archipelagoes, we would not expect each replicate of an island to have exactly 
the same number of species, nor would we expect each species to occur on 
exactly the same number of islands in the different archipelagoes. We develop 
these ideas later in this chapter. 

3. Significance tests. Connor and Simberloff (1979) compared the observed 
and expected distributions with a chi-squared test. However, this may be 
inappropriate because of the nonlinear dependence imposed by the marginal 
constraints. Even if the chi-squared test were appropriate, the number of de- 
grees of freedom used by Connor and Simberloff (1979) was roughly double 
the "best fit" value found empirically (Roberts and Stone 1990). The same criti- 
cism applies to Gilpin and Diamond's (1982) null model, which also compared 
observed and expected distributions of species pairs with a chi-squared test. 

The Wright and Biehl Procedure 

Wright and Biehl(1982) suggested a "shared-island" test for detecting unusual 
species co-occurrences. For each species pair, they calculated the tail probabil- 
ity of finding the observed number of co-occurrences. The calculation is 
identical to Connor and Simberloff's (1978) "shared species" analysis, but with 
the rows and columns of the presence-absence matrix transposed. Wright and 
Biehl(1982) argued that an assemblage exhibited nonrandomness if more than 
5% of the species pairs shared more islands than expected (at the 5% signifi- 
cance level). By this test, the New Hebridean avifauna exhibited aggregation, 
because 8% of the species pairs shared significantly more islands than expected 
by chance. 



180 Chapter 7 

One advantage of the Wright and Biehl (1982) method is that it directly 
pinpoints particular species pairs that show aggregated or segregated distri- 
butions. However, assessing the statistical significance of all possible non- 
independent species pairs is problematic. Even if the null hypothesis is rejected 
for more than 5 %  of the pairs, this pattern can be caused by nonrandomness in 
the distribution of only a few species (Connor and Simberloff 1983). The same 
criticism applies to the shared species analysis of Connor and Simberloff 
(1978) and to Gilpin and Diamond's (1982) null model for R-mode analyses. 
An excess of species pairs that are significant at the 5 %  level does not mean 
that the patterns are biologically meaningful for all of these pairs. 

A more serious problem is that Wright and Biehl's (1982) shared island 
model assumes that all sites are equivalent. Consequently, it confounds species-site 
associations with the effects of species interactions. The slight excess of New 
Hebrides species pairs that shared more islands than expected may simply 
reflect differences in island suitability. 

The Gilpin and Diamond Procedure 

Gilpin and Diamond (1982) developed their own R-mode analysis as an alter- 
native to the Connor and Simberloff (1979) approach. Gilpin and Diamond's 
(1982) null model was based on the principles of contingency table analysis. 
For species i on island j, they calculated the probability of occurrence as 

where R, is the row total for species i, C, is the column total for island j, and N 
is the grand total for the presence-absence matrix. Next, they calculated the 
expected overlap for each species pair by summing the product of these 
probabilities across all islands. Observed and expected overlaps for each spe- 
cies pair were standardized and then compared with a chi-squared test to a 
standard normal distribution. If the null hypothesis of independent placement 
were true, the histogram of normalized deviates would follow a normal distri- 
bution. Species pairs that showed unusual aggregation would appear in the 
right-hand tail of the distribution, and species pairs that showed unusual segre- 
gation would appear in the left-hand tail. 

For the New Hebridean birds, the observed distribution of deviates was 
significantly different from a standard normal, and weakly skewed towards the 
right. The Gilpin and Diamond (1982) analysis did not reveal any significant 
negative associations, in contrast to the results of Wilson (1987) and of Stone 
and Roberts (1992). Returning to Diamond's (1975) original Bismarck data, 
Gilpin and Diamond ( 1  982) found a strong excess of positive associations and 



a weak excess of negative associations. They examined the extreme species 
pairs in detail and attributed positive associations to shared habitat require- 
ments, clumping of single-island endemics on large islands, shared geographic 
origins, and shared distributional strategies. Negative associations were attrib- 
uted to competitive exclusion, differing distributional strategies, and differing 
geographic origins. Compared to Diamond's (1975) original conclusions, the 
null model interpretations of Gilpin and Diamond (1982) placed considerably 
less emphasis on competitive interactions in producing community assembly 
rules for the birds of the Bismarck Archipelago. 

Using the Gilpin and Diamond (1982) model, Jackson et al. (1992) also 
found mostly positive associations between species pairs of fishes in lakes. 
These positive associations were usually between pairs of cold-water species 
with similar habitat requirements. Negative associations were usually between 
piscivorous fish species and their prey. Finally, McFarlane (1989) found an 
excess of positive associations for the Antillean bat fauna and attributed this 
pattern to a large number of single-island endemics in the northern Antilles. 

Gilpin and Diamond's (1982) approach was important because it introduced 
the idea that the marginal totals may represent expected values rather than 
absolute constraints. In different runs of a stochastic model, we would not 
expect each island to support precisely the observed number of species, or each 
species to always occur with its observed frequency. In fact, putting a strict 
"cap" on the number of species that can occur on an island, as Connor and 
Simberloff (1979) did, could be interpreted as a competitive limit to local 
species richness. In contrast, if islands behave as "targets" that are colonized 
independently by different species (Coleman et al. 1982), we would expect 
some variance about the expected species number in our null model. Empiri- 
cally, a "target" model is consistent with the finding that island area typically 
explains only 50% of the variation in species number (Boecklen and Gotelli 
1984). Although Gilpin and Diamond (1982) did not emphasize this point, their 
approach was an important first step toward incorporating this sort of variabil- 
ity into null models. 

Unfortunately, there are several problems with the Gilpin and Diamond 
(1982) model. First, the formula for cell probabilities (R,C,/N) is actually the 
cell expectation (Connor and Simberloff 1983), and consequently some of the 
expected "probabilities" in a matrix can take on values > 1.0. Even when a 
corrected formula is used, the contingency table model is not strictly correct, 
because it allows for multiple occurrences in each cell of the matrix, whereas a 
presence-absence matrix only contains zeros and ones. This may not be a 
problem in practice, because Monte Carlo simulations of cell probabilities gave 
qualitatively similar results (appendix to Gilpin and Diamond 1982). 
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Second, the Gilpin and Diamond (1 982) model implicitly allows for "degen- 
erate" distributions: empty islands and missing species, which correspond to 
matrix columns or rows with all zero entries (Connor and Simberloff 1983). In 
the Gilpin and Diamond (1982) model, occasionally a given island would never 
be "hit" by any of the species. Unless the observed presence-absence matrix 
contained the full sampling universe of missing species and empty islands, the 
expected values from this model would be biased. On the other hand, Haefner 
(198%) found that degenerate distributions introduced only a slight bias to- 
ward accepting the null hypothesis. 

Finally, the Gilpin and Diamond (1982) model is susceptible to Type I error. 
Wilson (1 987) constructed a random presence-absence matrix with a probabil- 
ity of occurrence of 0.33 for every cell. This matrix was significantly non- 
random by the Gilpin and Diamond (1982) model O, < 0.001), with a slight 
excess of positive species associations. Gilpin and Diamond (1987) objected 
that such randomly constructed matrices may contain biological structure. 
Nevertheless, Wilson's (1987) analysis suggests that the Gilpin and Diamond 
(1982) model is probably not appropriate for the analysis of co-occurrence 
data. 

Summary of the Controversy and a New Approach 

We think the controversy over R-mode analysis boils down to four issues: 

1. Which species and which islands should he analyzed? It is surprising how 
little attention has been given to this point. The same data sets have been 
analyzed over and over with little discussion of source pools, colonization 
potential, and habitat availability of islands (Terborgh 1981 ; Graves and Gotelli 
1983). Some of these factors have been discussed post hoc, but they must be 
considered in a systematic fashion before any analysis is attempted. Careful a 
priori selection of sites and species by explicit criteria is at least as important as 
the particular null model used for analysis. 

2. Which metric should be used? In other words, how do we properly 
quantify nonrandomness and species associations in a presence-absence ma- 
trix? There are many different kinds of structure in a presence-absence matrix, 
but for the purposes of recognizing species associations, we think the following 
five metrics are most informative: 

a. The number of species combinations. This is perhaps the most basic 
measure of community organization (Pielou and Pielou 1968). If assembly 



rules are operative, there should be fewer species combinations observed than 
expected under an appropriate null model. 

b. The number of checkerboard distributions. The checkerboard distribution 
is the simplest and most clear-cut of Diamond's (1975) assembly rules. It 
represents the strongest possible pattern of species repulsion. 

c. The "checkerhoardedness" index qf Stone and Roberts (1990). This sta- 
tistic measures the overall tendency for species pairs in a matrix to co-occur. It 
may reveal species pairs that associate negatively but do not occur in a perfect 
checkerboard. 

d. The "togetherness" index of Stone and Roberts (1992). Both positive and 
negative associations are possible in the same matrix, and this index measures 
the tendency for species to co-occur. 

e. Schluter's (1984) variance ratio. Negative co-occurrence as measured 
by the variance ratio is not always equivalent to that measured by the 
"checkerboardedness" index. This difference arises because the variance 
ratio test does not constrain column totals. Different patterns of negative 
covariation may be revealed by comparing the variance ratio to null model 
predictions. 

3. Which simulation procedure should he used? We accept the logic of 
Connor and Simberloff (1979) that neither islands nor species are equiprobable 
and that this should be reflected in the null model. However, their simultaneous 
constraint of row and column totals was simply too severe. We prefer an 
approach sin~ilar to Gilpin and Diamond's (1982), which treats the row and 
column totals as expectations; the actual row and column totals should be 
allowed to vary from one simulation to the next. Although both the Connor and 
Simberloff (1979) and the Gilpin and Diamond (1982) approaches are flawed, 
we think the following two simulation procedures are acceptable alternatives: 

a. Row totals,fixed, column totals pmhahilistic. This model takes the ob- 
served frequency of occurrence of each species as a constraint but treats each 
site as a "target"; the probability of occurrence of each species at each site is 
proportional to the total number of species at that site. Thus, species number in 
each site will vary somewhat from one simulation to the next, although the 
relative rankings of sites in their species richness will be maintained on aver- 
age. Simberloff and Gotelli (1984) used this procedure to examine incidence 
functions, which will be described later. This protocol is the inverse of Connor 
and Simberloff's (1978) Null Hypothesis I1 and Patterson and Atmar's (1986) 
RANDOM1 algorithm, in which column totals were fixed and row totals were 
probabilistic. 
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b. Row and column totals probabilistic. A !ess constrained null model 
would allow both the row and column totals to vary randomly. In this case, 
what is simulated is not the placement of each individual species across the 
set of sites, but rather, the placement of the N species-occurrences across 
the entire matrix. For cell a,, in the matrix, the initial probability of a "hit" 
in the simulation is the joint probability of selecting the species (R, /N) and 
selecting the site (C,/N). This cell probability is thus (R,c,IN~), which cor- 
rects the error in Gilpin and Diamond (1982). In this simulation model, the 
most likely occurrence will be of the most common species on the most 
species-rich site, and the least likely occurrence will be of the rarest species 
on the most depauperate site. 

One complication is that these estimated probabilities will apply only to the 
very first occurrence that is placed in the matrix. After the initial placement, the 
distribution of less probable combinations will be more "even" than predicted 
by these probabilities. Because sites can only be occupied once per species, the 
less probable sites are consecutively hit as the matrix fills up. If the marginal 
probabilities are squared and then rescaled, the resulting marginal distributions 
in the simulated matrix will more closely resemble the original column and row 
totals (Bruce D. Patterson, personal communication). 

A second complication is that both protocols, and particularly protocol (b), 
could occasionally lead to degenerate distributions (= empty rows or columns) 
in simulated matrices. As we noted earlier, degenerate matrices should not be 
compared to observed presence-absence matrices, unless the full sampling 
universe of sites and species is known. Simulated degenerate matrices should 
be either discarded from the analyses or have a single species occurrence 
randomly repositioned to fill the empty row or column. Because all occur- 
rences can be easily placed by either algorithm (a) or (b), difficulties in filling 
the matrix and simultaneously maintaining row and column totals (Connor and 
Simberloff 1979) are not present. 

This simulation protocol may be expanded so that marginal probabilities do 
not depend on row and column totals but on independently measured attributes 
of species and islands. For example, site probabilities could be set proportional 
to island area (Coleman et al. 1982; Simberloff and Gotelli 1984) rather than 
total species richness. Species probabilities could be scaled proportional to 
density (Haila and Jarvinen 1981) or geographic range size (Graves and Gotelli 
1983) rather than to the total number of occurrences for each species. This sort 
of analysis requires a good deal of biological insight and information about 
sites and species, but it avoids the circularity (and convenience) of using 
marginal sums to estimate cell probabilities. 



4. How should the observed and simulated distributions be compared? Both 
Connor and Simberloff (1979) and Gilpin and Diamond (1982) used a chi- 
squared test to decide statistical significance. This is problematic, because none 
of the frequency classes in their analyses were independent of one another. We 
recommend summarizing matrix patterns in a single metric (or five metrics!). 
In this way, statistical significance can be directly estimated by classical 
randomization procedures (Edgington 1987)-the metric for the observed ma- 
trix can be directly compared to the distribution of values from a large number 
of simulated matrices (usually 21000) to estimate the probability value. This is 
much more straightforward than trying to compare a simulated with an ob- 
served distribution when the frequency classes of that distribution are not 
independent of one another. 

This approach also highlights an important difference in the strategy of 
analyzing presence-absence matrices. Connor and Simberloff (1978), Wright 
and Biehl (1982), and Gilpin and Diamond (1982) all advocated examining 
deviations of all possible pairs of islands or species and then attributing signif- 
icance to those pairs that showed extreme values. We think there are statistical 
and conceptual difficulties in this. The statistical difficulty is that none of the 
pairs are independent of one another, so it is unclear which pairs are statistically 
and biologically significant. The conceptual difficulty is that this procedure 
comes perilously close to "data-dredging" (Selvin and Stewart 1966). There 
may be a temptation to infer the hypothesis from emergent patterns, rather than 
explicitly stating an a priori hypothesis and testing for it with the null model. 
Rather than examining the individual pairs to reveal potential interaction, 
we prefer to carefully select species and sites for this purpose ahead of time, 
and then test whether there are nonrandom patterns in the matrix. In this 
way, the patterns and the mechanisms that produce them are kept conceptu- 
ally distinct from one another. We cannot overemphasize that the selection 
criteria must not include the distributional patterns being tested! 

Other Tests of Assembly Rules 

Diamond's (1975) approach to assembly rules emphasized the particular com- 
bination of species within a guild that coexist and the intermeshing resource 
utilizations that allow these species to persist. Other studies have expanded on 
Diamond's (1975) model and used null models to test for patterns of commu- 
nity assembly. For example, Pulliam (1975) used estimates of seed availability, 
bill sizes, and diets of wintering sparrow species to construct a "coexistence 
matrix" that predicted the bill sizes of species combinations that could coexist. 
The initial application of the model was successful, but additional data for three 
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Figure 7.6. Flow chart for null models used to test assembly rules of Greater Antillean 
Anolis lizards. From Haefner, J .  W. 1988b. Assembly rules for Greater AntilleanAn- 
olis lizards. Competition and random models compared. Oecologia 74:55 1-565, Fig- 
ure 1. Copyright O 1988 by Springer-Verlag GmbH & Co. KG. 

subsequent years fit the model very poorly (Pulliam 1983). A null model that 
incorporated habitat preferences of the species but did not include species 
interactions fit the data about as well as the assembly rules, although some 
patterns were still nonrandom with respect to this model. 

Haefner's (1988b) analysis of Anolis lizard coexistence in the Greater 
Antilles represents the most ambitious attempt to test Diamond's (1975) 



assembly rules against an appropriate set of null models. Haefner (1988b) 
analyzed the occurrence of eight species of Anolis at 11 Puerto Rican 
sample sites and asked what percentage of the observed species-site occur- 
rences could be successfully predicted by a suite of 20 (!) different assem- 
bly models (Figure 7.6). "Random insertion and deletion models" placed 
species on sites independently of one another, but with varying degrees of 
habitat affinity and niche requirements. These models constituted null hy- 
potheses of varying complexity with respect to competitive interactions. In 
contrast, a set of "simple deletion models" removed species according to 
rules of body size and niche overlap. "Complex deletion models" removed 
species according to rules derived from Williams's (1972, 1983) ecomorph 
model. 

Some of Haefner's (1988b) null models provided a good fit to the data, 
especially those that constrained row or column sums and incorporated 
habitat affinities. As expected, the best-fitting models were the complex 
deletion models, which were calibrated to maximize the fit to the Puerto 
Rican data set. Simple deletion models did not fit the data very well, 
suggesting that if competition structured this community, competitive as- 
ymmetries between species were probably common. When these same mod- 
els were applied to co-occurrence of Jamaican Anolis, the data were best fit 
by a null model that maintained column sums, or that maintained row sums 
and habitat affinities of species. As with the Puerto Rican data, the fit of the 
complex deletion models was good and that of the simple deletion models 
was poor. 

Although Haefner's (1988b) results enhance our understanding of com- 
munity assembly, the interpretations are by no means clear-cut. On the one 
hand, the good fit of the data to several of the simple null models suggests 
that competition is unimportant in community assembly. On the other hand, 
the ability of the calibrated complex models to successfully predict commu- 
nity structure of Jamaican Anolis supports Williams's (1972, 1983) eco- 
morph model and implicates competitive interactions. 

OTHER ASSEMBLY RULES 

Although most of the controversy surrounding assembly rules has been over 
forbidden combinations of species and competitive interactions, there are other 
types of assembly rules that may dictate the organization of communities. 
These other assembly rules have also been addressed productively with null 
models, and here we review these approaches. 
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Incidence Functions 

Diamond (1975) introduced the incidence function to describe the probability 
of occurrence of a species with respect to ordered site characteristics, such as 
species number. To calculate the incidence function, Diamond (1975) classified 
the islands of an archipelago into discrete size classes, according to species 
richness. He then plotted the proportion of islands occupied (0.0 If I 1.0) in 
each size class, ordered from species-poor to species-rich classes. The resulting 
incidence curve has been viewed as a characteristic "fingerprint" of the dis- 
tributional ecology of a species. 

For most species, the incidence curve increases monotonically, though not 
linearly (Figure 7.7). Diamond interpreted different incidence functions for 
birds of the Bismarck Archipelago as reflecting different distributional strate- 
gies. "High-S" species occurred mostly on large, species-rich islands, whereas 
the much less common "supertramp" species showed the opposite pattern and 
were found only on species-poor islands. Diamond (1975) speculated that 
high-S species competitively excluded supertramps from large, species-rich 

Figure 7.7. Incidence functions for gleaning flycatchers of the Bismarck Archipelago. 
The x axis is the number of species on an island, and they axis is the proportion of is- 
lands in a given size class that were occupied by the species. C = Monarcha cineras- 
cens; D = Pachycephala melanura dahli; A = Myiagra alecto; P = Pachycephala 
pectoralis; H = Myiagra hehetior; V = Monarcha verticalis; R = Monarcha chryso- 
mela. From Diamond (1975). Reprinted by permission of the publisher from Ecology 
and Evolution of Communities. M .  L. Cody and J. M. Diamond (eds). Cambridge, 
Mass.: The Belknap Press of Harvard University Press. Copyright O 1975 by the Pres- 
ident and Fellows of Harvard College. 



islands, and that shifts in incidence functions in different archipelagoes re- 
flected different species pools and subsequent levels of competition. 

In contrast. Gilpin and Diamond (198 1) explored the connection between the 
incidence function and the equilibrium theory of island biogeography. They 
viewed an assemblage as having no competitive interactions, with each species 
at a dynamic equilibrium in which colonizations and extinctions were bal- 
anced. In this scenario, the incidence function represents the fraction of time 

that a species occupies islands of a particular size class. From these incidence 
functions, Gilpin and Diamond (1981) inferred species-specific colonization 
and extinction rates, and derived the community-level extinction and coloniza- 
tion curves of the MacArthur and Wilson (1967) equilibrium theory (see 
Chapter 8). Hanski (1992) successfully applied this model to the insular distri- 
bution of shrews in eastern Finland, where field data have corroborated the 
assumption of dynamic turnover (Peltonen and Hanski 1991). 

Other interpretations of incidence functions are possible. The incidence 
function may reflect nothing more than the distribution of habitat types among 
islands. Thus, h i g h s  species may simply be habitat specialists, such as birds 
that are restricted to lakes, marshes, and high-elevation forest found only on 
large islands (Wiens 1989). Even in the absence of habitat specialization, the 
incidence function will reflect sampling variability, both in terms of the number 
of islands cerisused and the number of islands "sampled" by the species (Taylor 
1991). Common and widespread species will have their incidence functions 
shifted to the left because they will occur on a variety of different island sizes 
(Haila et a]. 1983). Whatever the cause of the incidence function, environmen- 
tal stochasticity should lead to a shallower curve as occurrences become more 
unpredictable with respect to ordered site characteristics (Schoener 1986b). 

Null models clarify some of these differing interpretations by asking how an 
incidence function would appear in the absence of any structuring force. 
Whittam and Siegel-Causey (1981b) made the first attempt to analyze inci- 
dence functions statistically, for seabird colonies of Alaska. For an archipelago 
of islands that have been sorted into size classes, they constructed an S x C 

table, where each species is a row and each column is a size class (not an 
individual island). The entries in the table were the number of islands of a 
particular size class occupied by a species. Contingency table analysis was used 
to assess statistical significance, and standardized residuals pinpointed particu- 
lar cells in the table that contributed positive or negative deviations. 

For Alaskan seabird colonies, the distributions of 20 species were highly 
nonrandom with respect to colony richness. Each species showed one or more 
significant deviations, and the sign of the deviations showed only one change 
in direction, running from small to large colonies (Figure 7.8). The analysis 



190 Chapter 7 

A L L  

0.2- + + GWG Figure 7.8. Statistical analysis of . 
colony, and they axis is the frac- 

0 

tion of species occurrences in colo- 
nies of a given size. Plus and 
minus signs indicate significant 
deviations for a particular size 

incidence functions for species in 
- - - 
T m ? . ?  

- Alaskan seabird colonies. The x 

class. Numbers indicate overall 
frequency of occurrence of species 
in colonies of different size. 
ALL = all species studied. Other 
species abbreviations as in Figure 
7.3. From Whittam and Siegel- 
Causey (198 1 b), with permission. 

I I I I I I I I I  axis is the number of species per 

LSP 
I I  -C 

Colony richness 

identified supertramp species, such as the Glaucous-winged Gull (Larus glau- 
cescens) and the Tufted Puffin (Lunda cirrhata), which occurred less often than 
expected in large colonies and more often than expected in small colonies. The 
more typical deviation was the high-S pattern, typified by several species of murres 
and auklets that were unusually present in large colonies and unusually absent from 
small colonies. Finally, some species showed no significant pattern of deviation, 
suggesting that occurrences were random with respect to colony size. 

There are two points to note about Whittam and Siegel-Causey's (1981b) 
analysis of incidence functions. First, they defined incidence differently from 
Diamond (1975). Whereas Diamond (1975) defined incidence as the proportion of 
occupied islands in a size class, Whittam and Siegel-Causey (1981b) used the 
proportion of the total occurrences of a species that fell in a particular size class. 
Second, unusual deviations in the Whittarn and Siegel-Causey (1981b) analysis 
were measured relative to the distribution of all other species in the assem- 
blage. Thus, high-S species were those which occurred relatively more fre- 
quently on species-rich islands than did all other species. If all species showed 
an identical supertramp distribution, nonrandomness would not be revealed. 



Incidence functions may have important implications for conservation biol- 
ogy. In particular, an incidence function analysis can be used to identify 
unusual minimum area requirements for particular species. Simply scanning a 
list of occupied sites may not be sufficient for this purpose, because even if a 
species were distributed randomly, it might be missing from some small sites 
by chance. Simberloff and Gotelli (1984) tested for unusually small minimum 
area occurrences of plant species in five archipelagoes of remnant prairie and 
forest patches in the North American prairie-forest ecotone. For each species, 
they ordered the patches on the basis of site area and then calculated the tail 
probability of finding the observed number of smaller, unoccupied sites. For 
three of the five archipeliigoes, there were more species showing nonrandom 
patterns than expected by chance. 

However, it might not be correct to conclude from this result that species 
have unusual minimum area requirements. In particular, this null model 
assumes that all sites are equivalent. But even if species have no special 
minimum area requirements, we expect large sites to be disproportionately 
occupied. A simulation model placed each species randomly in sites, with the 
probability of occurrence being proportional to the area of the patch. The 
simulation was repeated 10 times, and then the cumulative distribution func- 
tions for the observed and expected site occupancy were compared. The result 
was that far fewer of the species showed unusual deviations. In other words, 
nonrandomncss in the occupancy of sites could be effectively accounted for by 
differences in the areas of the sites. Nevertheless, the distributions of seven 
plant species in one of the assemblages were significantly nonrandom by this 
test. Interestingly, none of these species showed an unusually large minimum 
area requirement. Instead, they followed the supertramp pattern and oc- 
curred too frequently in small prairie and forest patches (Simberloff and 
Gotelli 1984). Wilson (1988) tested for the occurrence of plant species with 
respect to island area and also found only a few species that exhibited 
supertramp distributions. 

Finally, Schoener and Schoener (1983) expanded Diamond's (1975) idea of 
incidence functions beyond considerations of island area or species richness. 
They pointed out that sites can be ordered on any number of criteria, and then 
the occurrence of species tested against this ordering. "Haphazard" sequences 
of presence and absence would suggest that a variable does not play a direct 
role in determining the occurrence of a species. But if the sequence is highly 
ordered, the occurrence of the species is predictable with respect to that factor 
(Figure 7.9). The Mann-Whitney U test is a simple nonparametric analysis of 
the degree of this ordering for any particular variable. Within an archipelago, 
each species displays the same total number of presences and absences, so the 
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Figure 7.9. Occurrence sequence for resident species of 21 Bahamian islands. Islands 
are ordered on the basis of area. A = absent; P = present; T = islands of equal area. 
Note that the resident lizard Anolis sagrei has a perfectly ordered sequence, the resi- 
dent bird Dendroicapetechia has a highly ordered sequence, and the migrant bird 
Dendroica palmarum has a more haphazard sequence. From Schoener and Schoener 
(1983), with permission. 

size of the Mann-Whitney statistic is a measure of the relative strength of the 
orderings (Simberloff and Levin 1985). 

Schoener and Schoener (1983) used this test to analyze their extensive 
distributional data on 76 species of birds on 521 small islands in the 
Bahamas. Not only did they systematically census vertebrates on these 
islands, they also measured 54 variables that quantified area, isolation, 
habitat availability, and vegetation structure. The results indicated a very 
high degree of ordering. Species occurrences were quite predictable, al- 
though different groups of species seemed to follow different assembly 
rules. For example, the occurrence of lizards and resident birds was orderly 
with respect to island area, whereas the occurrence of migrant birds was 
more related to island isolation. The occurrence of both birds and lizards on 



islands could be predicted by vegetation and habitat structure, although 
the two taxa were ordered on slightly different vegetation characteristics. 

Within each group, distributional complementarities were more clear-cut 
when habitat variables were controlled for with a logistic regression (Schoener 
and Adler 1991). Thus, some checkerboards will be detected only when habitat 
differences among sites are measured and incorporated into the analysis. The 
more orderly the distributions of species are with respect to site characteristics, 
the less the patterns will conform to a simple checkerboard in which two 
species never co-occur within a set of similar islands. Such ordering at the 
community level may lead to "nested" species distributions, which we discuss 
in the next section. 

Assembly rules, as originally described by Diamond (1975), have been very 
difficult to discern in nature. The extent to which the occurrence of a species 
can be predicted by the distribution of other species is still open to debate. In 
contrast, the evidence seems quite compelling that site characteristics can be 
used to successfully predict the occurrence of most, if not all, species in an 
assemblage. We do not deny the potential importance of species interactions, 
but we do suggest that assembly rules might best be developed in an autecolog- 
ical framework. Such rules would emphasize the ecological requirements of 
each species and the characteristics of individual sites, rather than the presence 
of forbidden combinations of species (Graves and Gotelli 1983). 

Nestedness 

Suppose that each species in an assemblage showed a perfectly ordered occur- 
rence sequence with respect to species richness. In this case, the incidence 
function would be a steep J-shaped curve, with an incidence of zero below a 
critical species richness class and 1.0 above that class. At the community level, 
this occurrence sequence would correspond to a "nested distribution of spe- 
cies (Patterson and Atmar 1986). Like a collection of puzzle boxes that fit 
perfectly within one another, the species composition of each small assemblage 
would be a perfectly nested subset of all larger assemblages. 

Many presence-absence matrices conform to this pattern (Patterson 1990; 
Wright and Reeves 1992). For example, the distribution of five fish taxa in 28 
South Australian springs (Kodric-Brown and Brown 1993) showed only a 
single species occurrence that deviated from a pattern of perfect nestedness 
(Table 7.1). Patterns of nestedness have been shown for assemblages of mam- 
mals (Patterson and Brown 199 l), birds (Bolger et al. 1991), insects (Patterson 
1990), plants (Wright and Reeves 1992), and parasites (Dobson and Pacala 
1992), for insular and oceanic islands (Patterson and Atmar 1986); for habitat 
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fragments (Bolger et al. 199 1); and for fossil assemblages and colonizing insect 
faunas (Patterson 1990). Nestedness has been noted before in the ecological 
(May 1978) and biogeographic (Darlington 1957) literature, but it has only 
received widespread attention since the 1980s. 

How can nestedness be quantified, and what level of nestedness is expected 
in a randomly constructed biota? Indices of nestedness can be derived for entire 
communities or for individual species. Given that most assemblages exhibit a 
significant pattern of nestedness, the latter may be more informative (Sim- 
berloff and Martin 1991). Deviations from nestedness occur when species are 
found where they are not expected ("outliers") or are absent where they are 
expected ("holes"). For example, both montane mammals and birds of the 
Great Basin exhibit significant nestedness, but the bird distribution is outlier- 
rich, whereas the mammalian pattern is hole-rich (Cutler 1991). Atmar and 
Patterson (1993) measured "unexpectedness" as a diagonal deviation from a 
perfectly nested matrix, and Wright and Reeves (1992) introduced a scaled 
index that can be used to compare matrices of different dimension. Finally, Ryti 
and Gilpin (1987) used parameters from a logistic regression model to quantify 
the degree of nestedness in a matrix. 

All of these metrics can be compared to values expected from randomly 
assembled matrices. Patterson and Atmar (1986) introduced two null models 
for randomizing matrices and comparing them with nestedness statistics. In the 
first model (RANDOMO), site richness was retained and species were drawn 
equiprobably from the source pool. In the second model (RANDOM I), species 
were drawn in proportion to their occurrences. These models are identical to 
Null Hypotheses 0 and 2, proposed for Q-mode analysis (Connor and Simber- 
loff 1978). Because the observed number of species occurrences was not 
maintained in these simulations, species that occurred in every site artificially 
inflated the apparent degree of nestedness and should have been omitted from 
the analysis (Simberloff and Martin 1991). But even without such species, the 
pattern of nestedness in most archipelagoes is so strong that it is unlikely to 
have been caused by a simulation artifact. 

What explanations have been offered for the nestedness pattern? The domi- 
nant interpretation, first offered by Patterson and Atmar (1986) for montane 
mammals, is that the nestedness reflects a contraction of insular area, followed 
by an orderly sequence of extinctions, so that the same subset of widespread 
species survives in small habitats. If this "selective extinction" hypothesis is 
true, it suggests that faunal collapse is a highly deterministic process. The 
implication for conservation biology is that the biotas of small habitat frag- 
ments converge by loss of species that are uncommon in the landscape (Wright 
and Reeves 1992). This interpretation of nestedness is also a restatement of the 



Table 7.4 
Relative nestedness of avifaunas of land-bridge and oceanic islands 

- - 

Fauna Observed N Expected N 
- 

P 

Oceanic 5 3 53.32 -0.50 
Land-bridge 158 363.73 <0.00001 

The nestedness index, N, indicates the degree to which a presence-absence matrix departs from 

perfect nestedness. The simulation procedure (RANDOMI) holds species number constant on 
islands; the probability of occurrence of each species is weighted by its frequency. Note that the 

faunas of land-bridge islands are more highly nested than the faunas of oceanic islands. From 
Patterson (1!)87). 

SLOSS (single-large-or-several-small) debate in conservation biology (Sim- 
berloff and Martin 1991 ). 

But this is by no means the only explanation for nestedness. Darlington 
(1957) first proposed that the pattern could be explained by "selective immigra- 
tion"-nestetiness arises because of differences among species in their ability 
to immigrate and successfully colonize islands. Finally, a nested pattern of 
species occurrences might be related to neither immigration nor extinction, but 
simply reflect a nesting of habitats on islands of different sizes. In the West 
Indian avifauna, for example, the proportion of single-island endemics is much 
higher on the four large Greater Antilles than on other smaller islands (Terborgh 
1973a). The Greater Antilles also support a greater diversity of habitat types, 
and the nestedness of the avifauna may simply reflect this pattern of habitat 
diversity. 

How can these mechanisms be distinguished? Support for the "selective 
extinction" hypothesis comes from the observation that the degree of nested- 
ness is somewhat greater for faunas of land-bridge islands than oceanic islands 
(Table 7.4). However, land-bridge and oceanic islands may differ in many 
factors besides their previous mainland connection (Gotelli and Graves 1990), 
and the evidence for "faunal collapse" of land-bridge island faunas is not 
generally compelling (Faeth and Connor 1979; Boecklen and Simberloff 
1986). Moreover, highly nested faunas have been discovered in archipela- 
goes that are dominated by stochastic colonization and extinction, such as 
defaunated mangrove islands and vacant city lots (Patterson 1990). These 
findings suggest that nestedness need not imply orderly extinction, and that 
the pattern of nestedness may be a general property of many communities, 
rather than a specific attribute of islands undergoing biotic relaxation (Pat- 
terson 1990). 
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Lomolino (in press) has shed light on the problem by measuring the degree 
of nestedness when islands are ordered first by area and then by the degree of 
isolation. If selective extinction is more important, the ordering by area should 
show the strongest pattern of nestedness. If immigration is more important, the 
pattem should be more nested when sites are ranked by isolation. Significance 
was assessed by randomly reordering the matrices and then examining the 
weighted deviations from perfect nestedness. 

Lomolino (in press) applied this test to distributions of nonvolant mammals 
in three archipelagoes of the Great Lakes and the St. Lawrence River. For all 
three archipelagoes, faunas were nested with respect to both area and isolation. 
But for two of the three, patterns of nestedness were more orderly with respect 
to isolation than to area. This finding suggests that immigration dynamics may 
play an important role in determining the pattem of nestedness, even though 
isolation itself was not always significantly correlated with species richness. 
We need more tests of this sort on additional archipelagoes to evaluate the 
relative contributions of immigration and extinction to nestedness. 

Finally, it is worth noting that nestedness will cause faunas of similar size to 
be similar in composition, whereas checkerboard distributions and other for- 
bidden combinations of species will have the opposite effect and increase 
diversity of similar sites (Graves and Gotelli 1993). Consequently, the degree 
of nestedness in an archipelago is correlated with the average similarity in 
species composition among sites (Wright and Reeves 1992). Perhaps the fre- 
quent occurrence of nestedness is one reason that checkerboard patterns of 
distribution seem to be the exception, rather than the rule, for most assem- 
blages. 

Niche Limitation 

Wilson et al. (1987) suggested that if niche limitation were generally important, 
then the number of species that coexist in a guild would be constrained by 
competition (Colwell 1979). This approach does not emphasize the identities of 
particular species combinations, but instead draws on the older literature of 
niche limitation initiated by studies of species/genus (SIG) ratios (see Chap- 
ter 1). 

Wilson et al. (1987) measured niche limitation as the variance in species 
number among a set of similar sites. If competition limited the number of 
species that could coexist locally, then the variance in species number would 
be unusually small compared to the variance in an unstructured community. On 
the other hand, the variance in S will also be increased if sites differ in their 
suitability, or if the community is not in an ecological or evolutionary equilib- 
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Figure 7.10. A patch model for small-scale niche limitation. The local source pool for 
colonization of a quadrat is the set of species occurring in the centered 3 x 3 grid. In 
this example, there are three local occurrences of species A, so it is placed with a simu- 
lation frequency of 319 = 0.333 for the central quadrat. Reprinted with permission 
from A. J. Watkins and J. B. Wilson. 1992. Fine-scale community structure of lawns. 
Journal of Ecology 80: 15-24. 

rium. The expected variance can be calculated analytically (Barton and David 

1959) or generated by a null model simulation in which species occurrences are 
randomly allocated to quadrats. The test is very similar to the variance ratio 

(Schluter 1984), because strong negative associations between species pairs 
will reduce the variance in total S. 

Wilson et al. (1987) applied their test to a number of floristic data sets. To 
control for differences in suitability of sites, they searched for niche limitation 

of coexisting plant species at small spatial scales (5 m x 5 m contiguous 
quadrats) that were presumed to be environmentally uniform. For 164 sites in a 
homogeneous agricultural field, the observed variance in S was significantly 

greater than expected. Results were similar when the quadrats were subdivided 
floristically or environmentally. A large variance in S was also found for the 
vegetation of a uniform dune slope, but not for Patrick's (1968) data on diatom 
colonization of glass microscope slides. Similar results were obtained by Wil- 
son and Sykes (1988). Variance in species richness was reduced for plants of 12 
"lawns" in New Zealand and Fiji, but only for tiny quadrat subdivisions (360 
and 160 mm2; Watkins anti Wilson 1992). Palmer (1987) found reduced vari- 
ance in plant species number of Minnesota old fields, although his sites were 
unlikely to have been in equilibrium. Collectively, these results provide little 
evidence for strong niche limitation in floristic assemblages. 

The Wilson et al. (1987) test assumes that all sites are colonized from a 
common species pool. An alternative assumption is that subtle microhabitat 
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variation generates spatial variation in the pool of species available to colonize 
plots. Watkins and Wilson (1992) tested this "patch" model by randomly 
selecting species for a quadrat from a set of adjacent quadrats (Figure 7.10). 
This null model is conservative, because the number of species that can be 
sampled from a few adjacent quadrats is usually much smaller than the total 
number from all quadrats. Nevertheless, there was still a variance deficit in 
species richness for most sites. The results suggest that niche limitation for 
plants may occur at an extremely small spatial scale, perhaps reflecting spacing 
constraints of individual plants in small quadrats. 

Guild Structure 

Whereas Wilson et al. (1987) emphasized the number of coexisting species 
within a particular guild, other studies have examined the relative frequency of 
different guilds. The null hypothesis, often implicit, is that the relative fre- 
quency of guilds in the assemblage represents a random sample of species from 
the colonizing source pool. 

Two deviations from this null model are possible: the difference in guild 
frequencies between the source pool and the assemblage might be unusually 
large or unusually small. Biological significance has been attributed to both 
patterns of deviation. When the deviations are large, certain guilds are over- or 
underrepresented in local assemblages. In particular, many authors have noted 
the apparent "disharmony" of small island faunas compared to large mainland 
assemblages (Carlquist 1974). For example, MacArthur et al. (1972) attributed 
the consistent absence of some bird families from Neotropical land-bridge 
islands to interspecific competition. D. L. Lack (1 976) also described examples 
of the limited coexistence of confamilial bird species in the West Indies and the 
role of reduced habitat and resource availability in producing these patterns. 
However, as in the analysis of species/genus (SIC) ratios (Chapter l), we 
expect some deviations from the expected number of species in a guild 
because of sampling error. Drawing species randomly from an appropriate 
source pool is the correct procedure for evaluating the deviations of guild 
frequencies in small assemblages. 

As described in Chapter 2, Gotelli and Abele (1982) used the hypergeomet- 
ric distribution to test for deviations in species richness of West Indian land- 
bird families. For each island, the observed number of species in each family 
was compared to the expected number if species were drawn equiprobably 
from the archipelago list. Based on this test, the number of coexisting species 
of parrots (Psittacidae) was less than expected per island, whereas the number 
of pigeons and doves (Columbidae) and mockingbirds (Mimidae) was greater 



than expected. For a set of Neotropical land-bridge islands, the Columbidae 
were also overrepresented, as were species in all families with large geographic 
ranges (Figure 2.5) or large body sizes (Gotelli and Graves 1990). Neither 
study provided evidence that competition within avian families limited insular 
coexistence in the Neotropics, or that certain families were extinction-prone on 
islands (cf. Terborgh and Winter 1978; Faaborg 1979). 

Trophic Ratios 

In some assemblages, guild frequencies show unusually small deviations, and 
this pattern has also been accepted as evidence for community assembly rules. 
The explanation is that biotic interactions, such as competition between differ- 
ent functional groups or predation between different food web components, 
constrain community structure (see Chapter 10). For example, the ratio of prey 
species number to predator species number was relatively constant in a sample 
of 100 community food webs (Cohen 1978), suggesting atrophic constraint on 
community assembly. Assemblages that did not contain the "correct" propor- 
tions of different groups were presumably unstable and did not persist. The 
hypothesis here is that the observed assemblage shows an unusually small 

deviation in guild frequencies from a colonizing source pool. This "constraints" 
hypothesis says nothing about what shapes guild frequencies in the source pool, 
only that, whatever these forces are, they dictate the stability of observed 
communities. The correct null hypothesis is that small deviations between 
observed and expected guild frequencies represent sampling error. This is the 
same null hypothesis for related tests of body-size matching (Schluter 1990) 
and convergence of morphology between communities (see Chapter 6). 

Heatwole and Levins (1972) searched for trophic constraints in Simberloff's 
(1969) mangrove insect recolonization data. They constructed a source pool list 
for six islands that were experimentally defaunated, assigned species to eight 
trophic classes (predators, parasites, detritivores, etc.), and calculated the ex- 
pected frequencies in each trophic class. Using recolonization data, they calcu- 
lated the summed deviation between observed and expected trophic class 
frequencies. Illis index decreased significantly with time since defaunation. In 
other words, as colonization proceeded, the observed fauna converged on the 
trophic structure of the source pool. 

However, the Heatwole and Levins (1972) index was sensitive to sample 
size. Because species richness increased during colonization, it may not be 
surprising that the deviation index decreased with time. Simberloff (1976b, 
1979b) showed with a null model simulation that the observed deviations from 
the source pool were no different than expected, given the number of species 
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Figure 7.11. Sample-size dependency of the trophic deviation index. The solid line 
gives the expected deviation index for trophic classes of insects recolonizing six 
defaunated mangrove islands. The smooth dotted lines enclose two standard devia- 
tions. Each point represents a different recolonization sample, and the jagged line con- 
nects the observations for a single island. Note that although the trophic deviation 
index decreases with increasing species richness, most observations fall within the pre- 
dictions of the null model. From Simberloff (l976b), with permission. 

observed at that point in the recolonization sequence (Figure 7.11). Whether 
or not the trophic ratios were nonrandom in the source pool fauna, the 
mangrove insect assemblage did not exhibit unusual trophic constraints 
during recolonization. 

Evans and Murdoch (1968) claimed that the ratio of herbivorous to ento- 
mophagous species number in a grassland insect community was unusually 
constant. In a reanalysis of Evans and Murdoch's (1968) data, Cole (1980) 
compared the observed and expected number of herbivorous species for each 
of 14 samples with the hypergeometric model. Cole (1980) found that all but 
one of the 14 samples were within two standard deviations of the expectation, 
and concluded that there was no evidence for unusual trophic structuring. 

Finally, Wilson (1989) tested the guild proportionality of plants in a New 
Zealand rain forest by assigning species to one of eight stratification classes. 
He then measured the variance in the proportion of species in each stratum 
across 80 quadrats (each 100 m2), and assigned species randomly to quadrats to 

generate the null expectation for this variance. Most strata did not deviate 
significantly, although the proportion of lianas was more variable than ex- 



pected and inversely proportional to the number of epiphyte species in the 
quadrat. The observed proportion of canopy trees was unusually constant, 
perhaps reflecting space constraints in the number of trees per quadat. 

Functional Groups 

Fox (1987) introduced a related type of assembly rule that also predicted 
pattern in the proportional representation of different guilds in an assemblage. 
He argued that the species pool for small-mammal communities could be 
divided into a number of distinct "functional groups," and that these functional 
groups showed an unusual propensity to be equally represented in any local 
assemblage. The assembly rule specified that species are added from different 
groups until all groups are represented in the assemblage, and then the rule 
repeats. In other words, Fox (1987) hypothesized that the distribution of spe- 
cies among functional groups was not simply constant (as in the guild limita- 
tion tests) but was unusually unqorrn. 

Functional groups do not reflect forbidden combinations of species per se, 
but only "favored" or "unfavored" states. Favored states have equal (or nearly 
equal) representation by each functional group and are predicted to occur more 
frequently than expected by chance. For example, if a species pool is composed 
of three functional groups, then a local three-species assemblage with all 
groups represented (1,1,1) would be a favored state. A four-species assemblage 
with (2,1,1) would also represent a favored state, because the mix of species is 
maximally even. In contrast, a three-species assemblage with a (0,1,2) mix 
would represent an unfavored state, because there are no species from the first 
functional group but two species from the third group. 

As in Diamond's (1975) analysis, competition for food resources is thought 
to be responsible for the uniform frequencies of different functional groups. 
However, Fox's (1987) hypothesis is less restrictive than Diamond's (1975) 
original assembly rules. Whereas Diamond ( 1  975) emphasized the identities of 

coexisting species, Fox (1987) considered only functional group identity. Dia- 
mond's (1975) analysis was restricted to taxonomic guilds of closely related 
species, but functional groups may be more phylogenetically diverse and could 
include unrelated species that are united by common morphology and foraging 
strategy. For example, Fox and Brown (1993) recognized one functional group 
of "quadrupedal non-heteromyids" that included four species of cricetids, three 
species of deer mice, one sciurid, and one ground squirrel. Other groups (e.g., 
"bipedal heteromyids") included only closely related congeners and were more 
similar to Diamond's (1975) taxonomic guilds. The species in different func- 
tional groups may differ in body size (Figure 7.12), which has been used as a 
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M E D I U M  S I Z E  

Figure 7.12. A three-dimensional model illustrating functional groups of soricid assem- 
blages from mesic forests in the northeastem United States. Three functional groups 
based on body size were recognized. Each cell represents the number of occurrences 
of a different combination of zero to two species of small, medium, or large soricids. 
Expected values from the null model are indicated in parentheses, and unfavored cells 
are shown with heavy outline. Significant departures from randomness are indicated 
by asterisks (* p < 0.05; *** p < 0.001). From Fox and Kirkland (1992), courtesy of 
the American Society of Mammalogists. 

convenient character to define functional groups (Fox and Kirkland 1992). 
Whatever criteria are used, the functional groups must be defined a priori and 
independently of the co-occurrence data (Fox and Brown 1993). 

Once the functional groups are defined, observed assemblages are classified 
as favorable or unfavorable states. For example, suppose there are three func- 
tional groups in the source pool, each with two species. In any local assem- 
blage, each functional group will be represented by zero, one, or two species. 
Thus, there are 33 = 27 different combinations of species from the three 
functional groups. In this hypothetical example, there are 15 favored combina- 
tions (including the 0,0,0 state) in which the functional groups are uniformly 



represented, and 12 unfavored combinations. As in Pielou and Pielou's (1968) 
analysis of 2k contingency tables, the different states are not equiprobable, and 
instead are conditional on the frequencies with which each species is repre- 
sented in the source pool. 

The expected number of favored and unfavored states was determined by a 
simulation in which species were drawn randomly and equiprobably from the 
source pool, without regard to their functional group. For a set of 52 mammal 
assemblages in temperate Australian heathlands, Fox (1989) divided the fauna 
into three functional groups (insectivore, herbivore, granivore-omnivore) of 
six, six, and three species each. Because no site contained more than two 
species in any functional group, the simulations were also constrained in this 
way to collapse the number of possible combinations. Fox (1989) found sig- 
nificantly more favored combinations and significantly fewer unfavored com- 
binations than expected by chance. The same pattern held for mammals of 
Australian eucalypt forests (Fox 1987) and for North American soricid commu- 
nities (Fox and Kirkland 1992). 

However, these initial analyses used an algorithm of sampling with replace- 
ment that was not appropriate for small assemblages (Biehl and Matthews 
1984). Fox and Brown (1993) constructed null models that sampled without 
replacement and extended the study of functional groups to North American 
desert rodent assemblages. For rodent assemblages in a small region of Nevada 
and at sites dispersed across the southwestern United States, there were again 
more favorable states represented than expected by chance (Figure 7.13). 

Fox and Brown (1993) next examined the individual cells of the contingency 
table to pinpoint particular combinations that led to nonrandomness. Although 
favorable con~binations were more probable than unfavorable ones, not all 
favorable combinations were equally likely. For example, the strongest devia- 
tion for the Nevada data set was a favored state of two quadrupedal heteromyid 
species, one bipdal  heteromyid, and one generalist granivore. In contrast, the 
strongest deviations for the dispersed sites were two unfavored cells that had 
more assemblages than expected, even though the net result was that favored 
combinations were too frequent. 

These results have been interpreted primarily in the context of interspecific 
competition: the different functional groups exploit food resources in different 
ways that are presumed to promote coexistence. The patterns reinforce experi- 
mental evidence for resource-based competition in both North American (Mun- 
ger and Brown 1981) and Australian (Dickman 1986) rodent assemblages. 

Two puzzles remain. First, why should the functional group rule repeat itself 
as more species are added to the system? In other words, if resource limitation 
is severe, how can two or more species from the same functional group coexist? 
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Figure 7.13. Observed and ex- 
pected frequencies of favored 
states for North American des- 
ert rodent assemblages. The 
frequency histograms show the 
number of favored states when 
species are sampled equiproba- 
bly from the source pool. The 
observed number of favored 
states is shown with a solid 
bar. (A) 11 granivore species 
in three functional groups 
from 115 sites in Nevada; (B) 
14 rodent species in five func- 
tional groups from 11 5 sites in 
Nevada; (C) 28 granivore spe- 
cies in three functional groups 
from 202 sites in southwestern 

deserts. From Fox and Brown 
(1993), with permission. 
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One might expect a superior competitor to exclude all other species within a 
functional grclup. Competition is not the only force leading to favorable states. 
Schluter (1990) showed that the same pattern will arise if source pools are 
small and if there is variation in colonization probabilities within a functional 
group. Wilson (1995) reanalyzed the Nevada data of Fox and Brown (1993) 
and showed that the statistical evidence for the functional group rule disappears 
if the assumption of equiprobable colonization is relaxed. 

Second, what role does phylogeny play in producing functional group as- 
sembly rules? Because many of the functional groups are composed of closely 
related species, historical processes such as allopatric speciation may be re- 
sponsible for the orderly composition of local assemblages. Whatever the role 
of interspecific interaction, phylogeny and history determine the mix of local 
species available for colonization (Cornell and Lawton 1992). Fox and Brown 
(1993; see also Brown 1988) argued that these phylogenetic effects are only 
present at a regional scale and that even at this scale, geographic range bound- 
aries (and hence source pool composition) may be shaped primarily by ecolog- 
ical forces (Bowers and Brown 1982). However, phylogenetic correlates of 
geographic range boundaries may be strong, even within groups of closely 
related species (Taylor and Gotelli 1994; see Chapter 9). Unraveling these 
historical and ecological correlations is a major goal of the comparative method 
(Harvey and Ragel 1991), and the functional group assembly rules could be 
profitably analyzed from this perspective. 

RECOMMENDATIONS 

For Q-mode analyses of shared species, we suggest Simberloff's (1 978a) weighted 
colonization models. For K-mode analyses of species combinations, there are 
several useful tests. The variance ratio (Schluter 1984) is a simple test for pattems 
of covariation that does not require Monte Carlo simulations. For detecting check- 
erboard distributions and unusual species combinations, we recommend a simula- 
tion in which row and/or column totals act as probabilistic constraints (Graves and 
Gotelli 1993). Other assembly rules and community pattems can also be addressed 
profitably with null model simulations, including incidence functions (Whittam 
and Siegel-Chusey 1981b; Simberloff and Gotelli 1984), nestedness (Simberloff 
and Martin 1991; Atmar and Patterson 1993), niche limitation (Wilson et al. 1987), 
guild structure (Cole 1980; Wilson 1989), trophic ratios (Simberloff 1976b), and 
functional groups (Fox and Brown 1993). In all cases, analyses will be greatly 
strengthened by independent estimates of colonization potential, resource avail- 
ability, source pool composition, and phylogenetic effects. 




